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Fig. 2. UPt~ atoms on planes z ----- 0 and z = ½. 

to c as shown in Figs. l (a)  and  (b). The atoms in 
UPt9 are also arranged on two planes perpendicular  
to c as shown in Figs. 2(a) and  (b). 

U P t  3 can be converted to UPt~ by  removing the  
rows of atoms 3 from Fig. 1 (a) thus allowing rows 2 
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and 4 to move closer together to give the packing of 
Fig. 2(a). Similar ly by  removing rows 2' from Fig. 1 (b) 
rows 3' and 1' move closer together. If  these two 
planes are then  moved b/6 relat ive to each other, 
the UPt~ packing sequence is obtained. These changes 
remove 4 P t  atoms from the UPt  3 or thohexagonal  cell 
leaving 4 u ran ium and 8 p la t inum atoms as required 
for the U P t  2 structure.  

The s imilar i ty  between the two structures suggests 
that nucleation of UPt~ on UPt s and of the rearrange- 
ment from UPt 3 to UPt 2 by diffusion will be com- 
paratively easy, and therefore the reaction to equilib- 
rium should be correspondingly rapid. 

This work was par t  of a programme carried out for 
Metal lurgy Division, A.E.R.E. ,  t tarwel l  and the 
authors wish to t hank  the Director of t ha t  Establ ish-  
ment  for permission to publish,  and Dr E. A. Calnan 
and Mr G. B. Brook of Fu lmer  Research Ins t i tu te  for 
helpful discussion. 
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The Lattice Energies  of Alkaline Earth Fluorides 
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The lattice energies U 0 of the alkaline earth fluorides CaF2, SrF~, and BaF 2 have been derived by 
term-by-term theoretical calculation. The results have been compared with 'experimental lattice 
energies' U obtained from thermodynamic data using the Born-I-Iaber cycle. The values of U 0 and U 
are respectively for CaF~ 610, 617, for SrF~ 582, 584, and for BaF~ 550, 549 kcal/mole at 0 °K. The 
small discrepancies in the case of CaF 2 and SrFe have been attributed to some deformation and inter- 
penetration of the ions in the crystals. 

1. Introduction 

This communicat ion reports calculations of lat t ice 
energies of the alkaline ear th  fluorides CaF~, SrF2, 
and  BaFe. Theoretical values for the latt ice energies 
have  been computed on the basis tha t  the compounds 
are ionic crystals with a van  der Waals  potential .  
The under lying theory is tha t  of Born & Mayer (1932), 
and  the method  used is similar  to tha t  employed by  
Morris (1958) for alkali  monosalphides.  The results 
are p resumably  more accurate t han  those previously 

obtained, using approximat ion  equations, b y  Sherman 
(1932), Yatsimirski i  (1951), Morris (1957), and others. 

The theoret ical ly calculated latt ice energies have 
been compared with 'exper imental '  values derived 
from the rmodynamic  data by  means of the  Born -  
Haber cycle. 

2. Theoretical  calculation of lattice energies 

The latt ice energy per mole at  0 °K. of an ionic crystal  

44* 
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is g iven  b y  the  following express ion (Born & Mayer ,  
1932; Hugg ins ,  1937) : 

U o = U z -  Ua + U w -  U z ,  

where  UE is t he  Coulomb or e lec t ros ta t ic  ene rgy  of 
attraction between the ions, UR is the repulsion energy, 
Uw the van der Waals energy, and Uz the zero-point 
energy. The terms UE, UR, Uw and U z for alkaline- 
earth fluorides can be calculated individually by 
means of the following equations: 

UE = e2NA/ro 

= exp {(r++r_--r0)/e} 
+½n'c++ exp {(2r+--kar0)/e} 
+n" c__ exp ((2r_-k2ro)/O}] 

Uw = N(C/r~ +D/r~) 

Uz = ~z. Nh~'m~,~.. 

The symbols  in  these  equa t ions  have  the  fol lowing 
s ignif icance:  

/V = Avogadro  n u m b e r ;  
e -- e lectronic  charge;  
A -- Made lung  cons tan t ,  re fer red  to  r 0, for the  f luor i te  

l a t t i ce ;  
r o = shor t e s t  equi l ib r ium d is tance  be tween  an ion  and  

ca t ion ;  
b = a repuls ion  c o n s t a n t  ob ta inab le  f rom the  con- 

d i t ion  
(dUo/dr)r=~o = 0; 

n = the  n u m b e r  of nea re s t  un l ike  ne ighbours  of a 
ca t ion;  

n', n " =  t he  n u m b e r  of nea res t  l ike ne ighbours  of a 
ca t ion  a n d  an  anion,  respec t ive ly ;  

r+, r _ - -  basic rad i i  of ca t ion  a n d  an ion  respec t ive ly ;  
c+_, c++, c__ = factors  i n t roduced  b y  P a u l i n g  (1928) 

for t he  dependence  of the  repuls ion of two ions 
on the i r  charges and  the  n u m b e r  of e lectrons in  
the i r  ou t e rmos t  shells;  

= a cons t an t  ob t a inab le  f rom compress ib i l i ty  d a t a ;  
]ca = ra t io  of the  shor t e s t  c a t i o n - c a t i o n  d i s t ance  to  r0; 
]c~ = ra t io  of t he  shor t e s t  a n i o n - a n i o n  d i s t ance  to  r0; 
C, D = v a n  der  W a a l s  cons tan ts ,  ca lcu la ted  as de- 

scr ibed below; 
h = P l a n c k ' s  cons t an t ;  
v ~ . - - c h a r a c t e r i s t i c  D e b y e  f r equency  for t he  solid 

~luorlde. 

where  a refers to  the  po la r i zab i l i ty  of an  ion, e refers  
to  an  ene rgy  charac te r i s t ic  of the  osci l lators in an  ion, 
a n d  p refers to the  'effect ive n u m b e r '  of ou ter  e lec t rons  

t !  i t !  t t t  t t !  

(1) (Mayer,  1933). S~, $6 ,  $6 , Ss, Ss and  Ss are sums 
of 1-6 and  l -s over  t he  un l ike  a n d  l ike po in t s  of t he  
la t t ice ,  if 1 is the  d i s tance  be tween  the  la t t i ce  points .  
The  sums depend  on the  l a t t i ce  t y p e  a n d  on t h e  
choice of r, which  is here  t a k e n  as the  d i s tance  be- 
tween  unl ike  ne ighbour ing  ions. 

The  expe r imen ta l  l a t t i ce  cons tan t s  used in  t h e  
p resen t  ca lcula t ions  are those  l is ted in  the  compi la t ion  

(2) of W y c k o f f  (1951). The  cons t an t  Q has  been t a k e n  as 
½ × 10 -s cm. (Huggins ,  1937). The  basic rad i i  of t he  
cat ions  are f rom H u g g i n s  & S a k a m o t o  (1957) a n d  t h e  
va lue  for the  f luoride ion f rom H u g g i n s  (1937). The  

(3) f requencies  of the  an ions  h a v e  been  e s t i m a t e d  follow- 
ing a cons idera t ion  of the  m a g n i t u d e s  used b y  M a y e r  

(4) (1933) in  his work  on a lkal i  hal ides.  Polar izabi l i t ies  
(5) are  f rom the  d a t a  of Tessman ,  K a h n  & Shock ley  

(1953). 
The  choice of va lues  of some of the  quan t i t i e s  used  

Table  1. Theoretical calculation of the lattice energies 
of alkaline earth fluorides 

CaF z SrF 2 BaF 2 

1. Crystal  t y p e  Fluor i te  F luor i te  F luor i te  
2. r 0 (•) 2.360 2.505 2.679 
3. 10-28N 6.023 6.023 6.023 
4. 10-1% (e.s.u.) 4-802 4.802 4-802 
5. A 5.03878 5.03878 5-03878 
6. 101~b (ergs.mol.) 1.21 1.13 1-10 
7. n 8 8 8 
8. n' 12 12 12 
9. n'" 6 6 6 

10. k 1 1.633 1.633 1.633 
11. k 2 1.154 1.154 1-154 
12. r+ (A) 1.17 1-31 1.46 
13. r_ (A) 1-05 1.05 1-05 
14. c+_ 1.125 1.125 1-125 
15. c~_+ 1-5 1.5 1-5 
16. c__ 0.75 0-75 0.75 
17. 10S~o (cm.) 0"3333 0-3333 0-3333 
18. 108°C (erg.cm. 6) 207 268 392 
19. 10~6D (erg.cm. s) 286 394 654 
20. 1024a+ (cm. 3) 0.99 1-4 2-2 
21. 10~4a_ (era. 3) 0.759 0.759 0-759 
22. 1012e+ (ergs./ion) 61.5 52.4 44.4 
23. 10xe~ (ergs./ion) 26-3 24-3 22-2 
24. S~ 8.709 8.709 8.709 
25. S~' 0.762 0.762 0.762 
26. S~" 1-524 1.524 1-524 
27. S~ 8.208 8.208 8.208 
28. S~' 0.253 0.253 0"253 
29. S~" 0.506 0.506 0.506 

The  v a n  der  Waa l s  cons tan t s  C a n d  D refer  to 30. 1060d. (ergs.cm. G) 20.8 26.5 37-1 
31. 106°d,~-~, (ergs.cm. 6) 45.2 77 161 

dipole -d ipo le  and  quadrupo le -d ipo le  a t t r a c t i o n  re -  32. 1060d*~ ~ (ergs.em. 6) 11.4 10.5 9-6 
spect ively ,  a n d  m a y  be eva lua t ed  using the  following 33. 107Sq+_ (ergs.cm. s) 33 45 72 
re la t ions :  34. 107Gq++ (ergs.cm. s) 85 169 452 

' 1 . . . . . . .  35. 1076q__ (ergs.cm. s) 14.8 12-6 10.5 
C -- S 6 d + _ +  2~'6 4+_b~-½S 6 d _ _  (6) 36. 10-12Vmax. (S -1) 9"69 7-38 6-99 
f )  S '  " 1.~'" 37. UE (kcal./mole) 708.7 667.9 624.4 

---- sq+-+½Ss q+++~--s ~ - -  (7) 38. -- UR (kcal./raole) -- I16.8 --103.2 --91-1 
39. Uw (kcal./mole) 21.5 19-3 18.8 

eae2 " ql,2 = 9dl,2 ~c¢lea + a~e~ (8) 40. - U z  (kcal./mole) --3.1 --2.4 --2.3 d l , 2 =  
~ a a a ~ e a + e 2 '  4e~ ( P l  P2 ) '  41. U 0 (kcal./mole) 610 582 550 
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in calculating the van  der Waals  energy is subject  to 
some uncer ta inty .  However,  by  using an empirical 
repulsive potential ,  de termined from the a t t rac t ive  
potent ial  and the constants  of the  crystal ,  the  mag- 
ni tude of error in t roduced into the  computa t ion  of 
latt ice energy by  an error in the  values of C and D 
is less t han  tha t  introduced into the  van  der Waals  
energy. 

D a t a  and results of theoretical  calculations are 
shown in Table 1. 

3. T h e r m o d y n a m i c  d e r i v a t i o n  of lattice energies  

The latt ice energies of alkaline ear th  fluorides m a y  
also be derived from the rmodynamic  d a t a  by  means  
of the  B o r n - H a b e r  cycle relat ionship:  

U = - A H + D + L o + I - 2 E  (9) 

where 

A H =  heat  of format ion  of the  solid fluoride; 
D = hea t  of a tomizat ion of fluorine; 
L 0 = hea t  of a tomizat ion of the meta l  const i tuent ;  
I = first plus second ionization potent ia l  of the  

meta l ;  
E = electron aff ini ty of atomic fluorine. 

The results obtained for these exper imental  lat t ice 
energies U, and re levant  the rmodynamic  d a t a  from 
which they  are calculated, are shown in Table 2. 
Values of heats  of format ion A H  at  298.16 °K. have  
been t aken  from Rossini et al. (1952). The hea t  of 
dissociation of fluorine a t  298.16 °K. is the  value due 
to S tamper  & Barrow (1958), and the  heats  of atomiza- 
tion of the metals  a t  0 °K. are those adopted  by  
Baughan  (1954). The ionization potentials  a t  0 °K. 
have  been t aken  from Moore (1949). The value of 
Bailey (1958) has been adopted  for the  electron 
aff ini ty  of atomic fluorine a t  0 °K. ; this value, ob- 
ta ined from mass spectrometric  work, agrees closely 
with the  value accepted by  Pr i tchard  (1953) and  the 
result  of S tamper  & Barrow (1958). 

The values of U refer to 0 °K. and  where necessary 
the rmodynamic  da t a  have  been corrected to 0 °K. 
The small energy changes between 0 and 298.16 °K. 
have  been es t imated and included in the  calculation 

Table 2. Calculation of the experimental lattice energies 
(Values in kcal./mole) 

--AH D L o I --2E U 
CaF9 290.3 37.72 42 414-4 -- 164.2 617 
SrF~ 290.3 37.72 39 384.2 -- 164.2 584 
BaF~. 286.9 37-72 42 349.4 -- 164.2 549 

of the  latt ice energies, a l though they  are not  given 
explicitly in Table 2. 

4. Discuss ion  

The differences A between the  exper imental  la t t ice  
energies U and the  theoretical  values U 0 are 7, 2, and 
- 1  Kcal.  for the  calcium, s t ront ium and  bar ium 
fluorides respectively. These discrepancies m a y  be due 
in pa r t  to uncertaint ies  in some of the d a t a  used in 
the calculations. However ,  it  is considered t ha t  the  
values of A for CaF~ and SrF~ m a y  be correlated with 
some deformat ion and  in terpenet ra t ion  of the  electron 
clouds of the  const i tuent  ions in the crystals.  Fa jans ' s  
rules and  ionization potent ia l  da t a  (Morris & Ahrens,  
1956) suggest t h a t  among the a lka l ine-ear th  fluorides 
such polarization phenomena  would be most  extensive 
in CaF 2 and least  extensive in B a F  2. 

The electron-density distr ibution in crystalline CaF~ 
has been invest igated,  and  the  min imum electron 
densi ty  between Ca ~+ and F -  ions is not  zero, as be- 
tween Na+ and C1- ions in NaC1, for example  (Weiss, 
Wi t t e  & WSlfel, 1957). 
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